

Etudes thermiques RT2012 et PASSIV'HAUS en phase conception

Projet de construction d'une maison individuelle

M. et Mme

Coordonnées

Maître d'ouvrage :	Maître d'œuvre :	Projet :
M et Mme	BE HOME	Maison individuelle
14150 OUISTREHAM	7, rue des Prés	14150 OUISTREHAM
	14170 BRETTEVILLE-L-ORGUEILLEUSE	

Etude réalisée par :

TY eco²

ZA La touche

35890 BOURG DES COMPTES

Tel: 02.99.52.14.38

Email: contact@tyeco2.com

Suivant: la réglementation RT2012

Avec le logiciel : PLEIADE + RT2012, version 4.19.2.1

Moteur RT2012: 8.1.0.0 Mode de calcul utilisé: Th-BCE

Suivant : le référentiel PassivHaus

Avec le logiciel : PHPP Version9.6a (2016)

Interlocuteur du projet : Romain MIGNOT

Suivi du dossier :

Version de l'étude	Date de réalisation
 V1 Version modifiée réalisée pour le dépôt du permis de construire - Modification de masques proches - Modification de protections solaires - Modification de menuiseries - Modification du système de chauffage 	13/03/2019
V0 Version initiale réalisée pour le dépôt du permis de construire	06/03/2019

Sommaire

Coord	données	1
Somr	maire	2
Avan [.]	nt-propos	3
•	Objet de l'étude :	3
•	Objectifs énergétiques RT2012 :	3
•	Objectifs énergétiques PASSIV'HAUS :	3
•	Recommandations :	5
Desci	ription du projet	6
•	Données du bâtiment	6
•	Données climatiques	6
Envel	eloppe du bâtiment	7
•	Types de parois	7
•	Détail des parois	8
•	Détail des menuiseries extérieures	9
•	Ponts thermiques	10
•	Ombrages	10
Equip	pements	12
•	Ventilation mécanique contrôlée (VMC)	12
•	Chauffage et eau chaude sanitaire	12
Résul	ıltats	15
Anno	ovo : dáfinitions	10

Avant-propos

• Objet de l'étude :

Ce projet de construction doit répondre un niveau de performance passif mais ne fera pas l'objet d'une demande de labellisation « Maison passive ».

Les objectifs de la présente étude sont :

- Réaliser les calculs thermiques RT2012 du bâtiment,
- Réaliser l'étude « maison passive » avec le logiciel PHPP,
- Définir le besoin de chauffage et valider la conformité aux critères Passiv'haus,
- Définir l'enveloppe et les équipements techniques du bâtiment,
- Vérifier la conformité du projet vis à vis de la réglementation thermique 2012.

L'étude est réalisée à partir des plans et descriptifs fournis par la maîtrise d'œuvre ou la maîtrise d'ouvrage.

Objectifs énergétiques RT2012 :

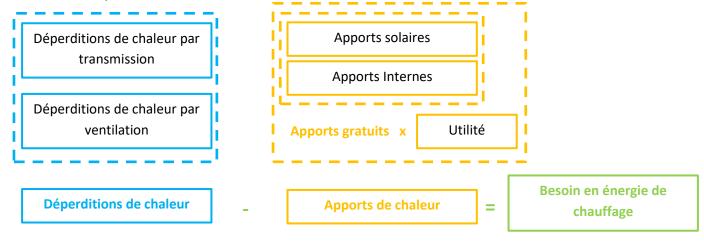
Exigences de résultats

- Bbio ≤ Bbio max
- Cep ≤ Cep max
- Tic ≤ Tic ref

xigences de moyens

- Recours aux énergies renouvelables
- Traitement des ponts thermiques
- Traitement de l'étanchéité à l'air
- Surface minimale de baies vitrées
- Mesure ou estimation des consommations d'énergie par usage

• Objectifs énergétiques PASSIV'HAUS :


Exigences de résultats

- Besoin de chaleur ≤ 15kWh/(m².an) OU puissance de chauffe ≤ 10 W/m²
- Consommation en énergie primaire ≤ 120kWh/(m².an)
- Niveau d'étanchéité à l'air n50≤0.6 h⁻¹
- Fréquence de surchauffe (T°>25°C) < 10% du temps

Besoin de chaleur:

Le dimensionnement du chauffage s'appuie sur le calcul de la puissance de chauffe de l'étude PHPP déterminé à partir des éléments suivants :

Consommation en énergie primaire :

L'étude présente les résultats de consommation obtenus avec le logiciel de calcul RT2012 et le PHPP. Les critères pris en compte dans ces calculs sont différents ; ils ne peuvent donc pas être comparés directement.

	RT2012	Passivhaus
Consommation d'énergie en kWhep/m²/an	<50 Bbio <bbio max<="" td=""><td><120 Besoin de chauffage < 15 kWheu/m²/an</td></bbio>	<120 Besoin de chauffage < 15 kWheu/m²/an
Usages	Chauffage Refroidissement ECS Éclairage Auxiliaires	Idem RT2012 + domestique
T° de consigne	19°C	20°C
Conversion Ef/Ep		
Electricité	2.58	2.7
Gaz	1	1.1
bois	1	0.2
Surface de référence	SRT	SRE

<u>L'étanchéité à l'air</u> :

Les bâtiments passifs doivent posséder une étanchéité à l'air optimale, vérifiée par un test d'infiltrométrie. L'indice d'étanchéité n50 ne peut dépasser 0.6 h⁻¹ pour une surpression et une dépression de 50 Pa. Il s'agit du débit de fuite pour une pression différentielle de 50Pa entre l'extérieur et l'intérieur du logement, rapporté au volume chauffé. Ce niveau est très exigent et nécessite une attention particulière en conception (la réalisation de carnets de détails est fortement recommandée).

La fréquence de surchauffe :

Les masques solaires présents sur le projet sont en pris en compte dans l'étude PHPP. Il s'agit des éléments naturels du paysage (relief, bâtiment, arbre...) qui créent de l'ombre sur les vitrages, permettant ainsi de protéger le bâtiment des éventuelles surchauffes l'été. Cependant ces ombrages peuvent être pénalisants l'hiver pour les apports solaires.

L'objectif pour assurer un confort thermique au sein du bâtiment tout au long de l'année est de mettre en place des systèmes pour :

- Empêcher le soleil de pénétrer l'été afin d'éviter les surchauffes
- Laisser passer les rayons du soleil en hiver afin d'optimiser les apports naturels et ainsi diminuer les besoins de chauffage

Pour les projets passifs, il est indispensable d'équiper les menuiseries de BSO (Brise Soleil Orientable) ou de volets/stores extérieurs.

• Recommandations:

Les résultats des calculs thermiques sont liés aux préconisations et hypothèses prises en compte dans l'étude. La modification des données d'entrée peut donc modifier les résultats et remettre en cause les résultats obtenus et le respect de la réglementation thermique.

Dans ce cadre, il est donc important de respecter les préconisations du présent rapport ou de nous contacter pour évaluer l'influence énergétique de toute modification apportée au projet.

Les isolants qui n'ont pas d'ACERMI peuvent être utilisés mais leur performance thermique est dégradée de 15% par le moteur de calcul s'il y a un avis technique ou un marquage CE. Sans justificatif officiel, une valeur par défaut pénalisante est attribuée.

Les vitrages doivent présenter une certification CEKAL.

Les panneaux préfabriqués devront avoir des justificatifs thermiques (avis techniques du C.S.T.B., certificat du C.S.T.B....) mentionnant la résistance thermique R ou le coefficient U du produit fini.

Dans le cadre d'un projet passif, il est fortement recommandé d'utiliser des matériaux et équipements labellisés PHI.

En ce qui concerne les installations techniques, les entreprises devront d'une part, réaliser leur propre dimensionnement et d'autre part, vérifier ou faire vérifier que ce dimensionnement permet de respecter les objectifs énergétiques du projet.

Il faudra s'assurer que les matériaux et équipements réellement posés sur le chantier correspondent à ceux préconisés dans l'étude ou qu'ils aient des performances équivalentes. Une vérification sera réalisée en fin de chantier par une personne accréditée afin d'établir l'attestation RT2012 d'achèvement des travaux.

Description du projet

• Données du bâtiment

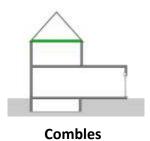
Classe d'exposition au bruit	BR1
SHAB (RT2012)	120,11 m²
SRT (RT2012)	147,60 m²
SRE (Passiv'haus)	124 m²
Volume chauffé	340,98 m ³
Surface de parois déperditives hors plancher bas (Atbat)	255,7 m²
Compacité	3,6
Perméabilité à l'air du projet	Q4 _{Pa,Surf} \leq 0,20 m ³ /(h.m ²) (RT2012) $n_{50} \leq$ 0.60 h ⁻¹ (Passiv'haus) Test d'étanchéité à l'air obligatoire

Les surfaces de référence aux calculs thermiques sont la SHAB et la SRT au sens de la réglementation thermique RT2012 et la SRE (surface de référence énergétique) pour le passif.

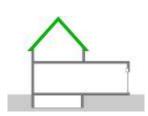
Données climatiques

Dans la méthode de calcul Th-B-C-E 2012 approuvée par arrêté du 20 juillet 2011, les données climatiques sont définies de façon conventionnelle. Les variantes sont le rayonnement solaire, le rayonnement lumineux, le rayonnement froid, les températures, l'humidité de l'air, la vitesse du vent et la température de l'eau froide du réseau (données disponibles sur le site internet "RT bâtiment"). Le projet est situé en zone **H1a**.

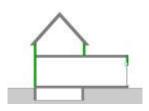
La segmentation géographique est répartie en 8 zones climatiques RT2012 qui sont précisées sur la figure ci-après :


Enveloppe du bâtiment

• Types de parois



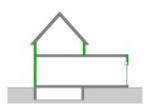
• Détail des parois



Composant	Ep. [cm]	λ [W/(m.K)]	R [(m².K)/W]
Fibre de bois soufflée type STEICO Zell	40	0,038	10,53
Membrane d'étanchéité à l'air			
Vide-technique			
Plaque de plâtre			
Total			10,73
Uparoi (W/m².K)		0,098	

Rampants

Composant	Ep. [cm]	λ [W/(m.K)]	R [(m².K)/W]
Couverture			
Lame d'air ventilée			
Chevronnage/ Laine de bois type STEICO Flex	8	0,038	2,11
Empannage/ Laine de bois type STEICO Flex	24	0,038	6,32
Membrane d'étanchéité à l'air			
Vide-technique			
Plaque de plâtre			
Total		8,62	
Uparoi (W/m².K)		0,131	



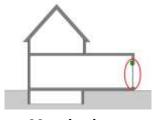
Murs extérieurs ossature bois

Composant	Ep. [cm]	λ [W/(m.K)]	R [(m².K)/W]
Finition RPE			
Fibre de bois type STEICO Integral	6	0,042	1,43
Ossature bois 45x220mm/ Fibre de bois insufflée	22	0,038	5,79
Contreventement type Durélis Vapourblock			
Laine de bois type STEICO Flex	4	0,038	1,05
Plaque de plâtre mise en œuvre avec le sytème Optima			
Total			8,41
Uparoi (W/m².K)			0,129

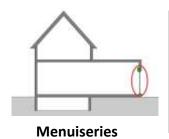
Remarque : traitement de l'étanchéité à l'air au niveau du panneau de contreventement

Murs extérieurs maçonnés

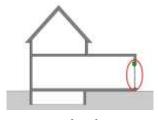
Composant	Ep. [cm]	λ [W/(m.K)]	R [(m².K)/W]
Finition RPE			
Maçonnerie isolante type BGV Thermo	20		1,25
Ossature bois 45x220mm/ Fibre de bois insufflée	22	0,038	5,79
Contreventement type Durélis Vapourblock			
Laine de bois type STEICO Flex	4	0,038	1,05
Plaque de plâtre mise en œuvre avec le sytème Optima			
		Total	8,23
Uparoi (W/m².K)			0,132
Remarque : traitement de l'étanchéité à l'air au niveau du panneau de			anneau de


Remarque : traitement de l'étanchéité à l'air au niveau du panneau de contreventement

Planchers bas sur videsanitaire


Composant	Ep. [cm]	λ [W/(m.K)]	R [(m².K)/W]
Plancher à entrevous PSE Up23 + dalle de compression			4,02
Mousse de polyuréthane projetée	7	0,028	2,55
Chape			
Revêtement de sol			
Total			6,59
Uparoi (W/m².K)		0,143	

• Détail des menuiseries extérieures


Menuiseries

Typologie:	Coulissants/ fixes/ frappes		
Modèle :	INTERNORM Gamme KF410 et KV440		
Châssis:	PVC/ Aluminium		
Vitrages :	Triple vitrage Argon Peu émissif	U _g = 0,7 W/(m ² .k) U _g = 0,5 W/(m ² .k)	
Uw:	0,7 à 1,1 W/(m².k) (en fonction des dimensions)		
Occultations :	Stores intégrés : • Baies des chambres 1, 2, 3		

Typologie:	Fenêtre de toit	
Modèle :	Velux	
Châssis:	-	
Vitrages:	Triple vitrage Argon Peu émissif U _g = 0,8 W/(m ² .k)	
Uw:	0,9 W/(m².k)	
Occultations :	-	

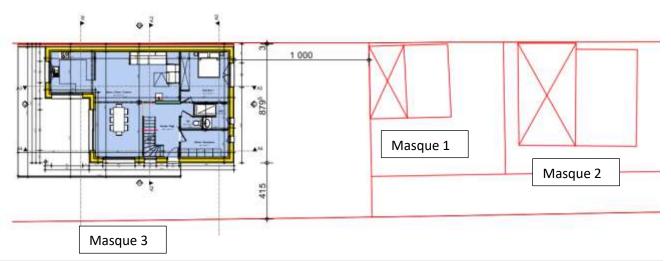
Typologie:	Porte d'entrée		
Modèle :	INTERNORM KF410		
Châssis:	-		
Vitrages:	Triple vitrage Argon Peu émissif	$U_g = 0.5 \text{ W/(m}^2.\text{k})$	
Ud:	0,9 W/(m ² .k)		
Occultations :	-		

Menuiseries

Ponts thermiques

Ponts thermiques linéiques structurels

La continuité de l'isolation doit être assurée au niveau de toutes les jonctions. Une attention particulière doit être portée sur les liaisons mur / plancher bas ainsi que mur/toiture. Les ponts thermiques ont été évalués à 0.01 selon la méthode de calculs Passiv'haus.


Ponts thermiques linéiques menuiseries

Les menuiseries devront être posées dans la couche isolante afin de ne pas générer de pont thermique.

Nous recommandons une pose en tunnel dans l'ossature à l'aide de mousse imprégnée adaptée (type Illmod trio de ILLBRUCK).

Ombrages

Environnement proche

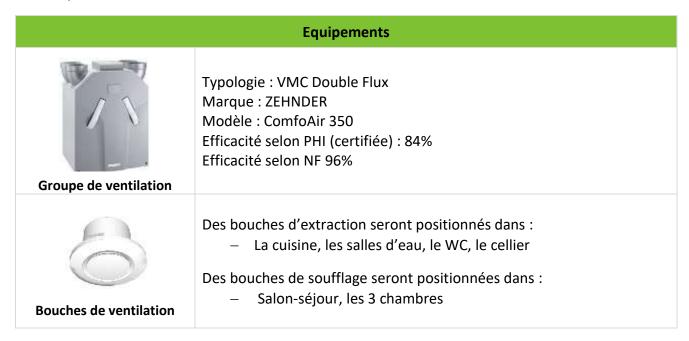
Référence	Nature	Distance	Hauteur
Masque 1	Bâtiment	10m	6,5m (défaut)
Masque 2	Bâtiment	20m	6,5m (défaut)
Masque 2	Mur	4,6m	2,12m

Les deux bâtiments impactent les apports solaires des menuiseries de la façade Est. Le mur de clôture impacte les 3 baies du rez-de-chaussée façades Sud.

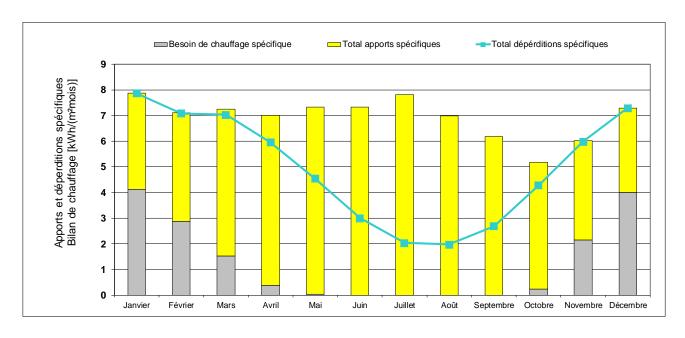
Protections solaires

La pergola initialement prévue sur le projet (modèle 1) permet de lutter contre la surchauffe en limitant les apports solaires en été sur les 3 grandes baies façades Sud et Ouest. Cependant, elle impacte également les apports solaires en hiver sur la baie de la cuisine façade Sud et Ouest du salon entrainant ainsi une augmentation du besoin de chauffage.

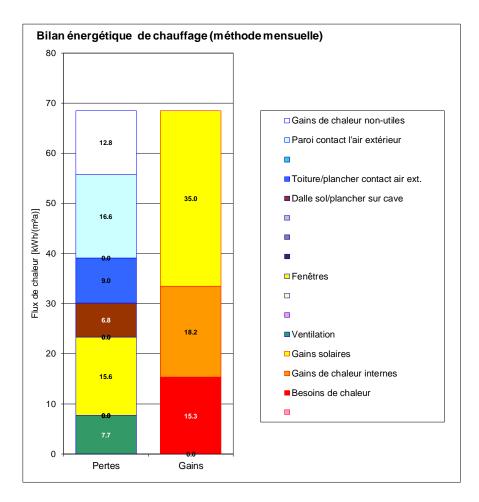
Pour réduire le besoin de chauffage tout en limitant la surchauffe, nous proposons de limiter à 0,8 m les casquettes sur l'ensemble des façades (modèle 2). La distance entre le haut des vitrages et la sous face de la casquette ne doit pas dépasser 0,20 m.


En complément, la porte d'entrée voit sa surface entièrement vitrée pour bénéficier d'apports solaires plus importants en hiver.

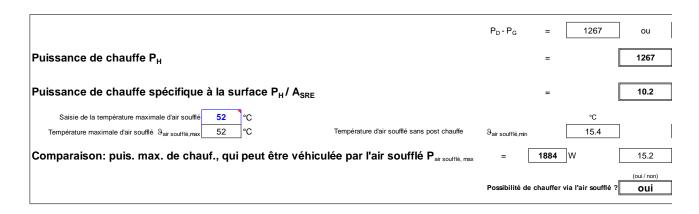
Equipements


Ventilation mécanique contrôlée (VMC)

Les installations de ventilation devront être conformes au DTU 68.3 : Installations de ventilation mécanique


• Chauffage et eau chaude sanitaire

Le besoin en énergie de chauffage déterminé par le calcul PHPP est de 1895 kWh/an soit 15,3 kWh/m^2 de SRE par an.



Bilan énergétique issu du calcul PHPP:

La puissance de chauffe est de 1,27 kW soit 10,2 W/m². Cette donnée permet de dimensionner l'installation de chauffage. La puissance de chauffe étant inférieure à 15,2 W/m², le chauffage sur l'air peut être envisagé.

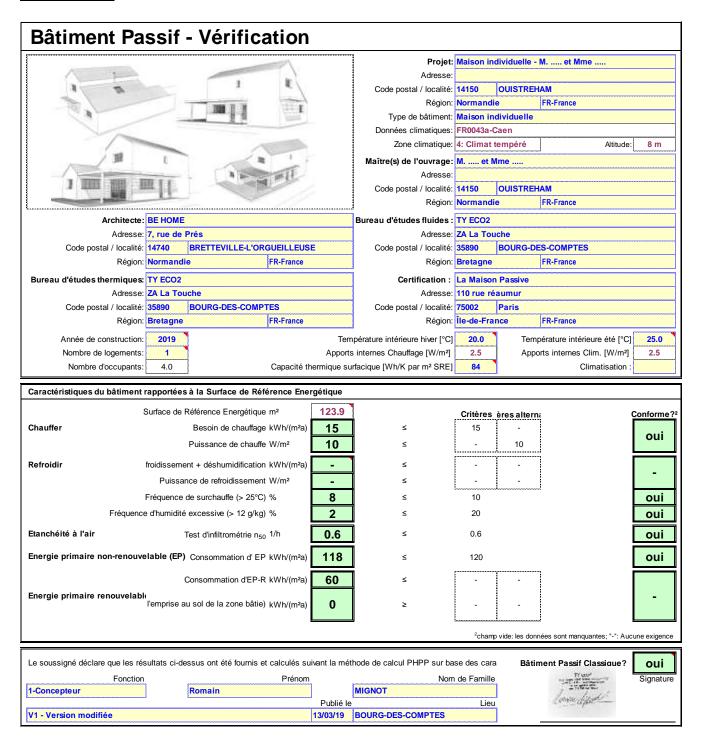
Equipement	Descriptif	Localisation	
Emetteur de chauffage	Typologie : Bouches chauffantes puissance 400 W	Salon séjour, Chambre 1, Chambre 2, chambre 3	
Emetteur de chauffage	Typologie : Sèche serviettes 500W	Salles d'eau (x2)	
Générateur d'ECS	Typologie: Chauffe-eau thermodynamique Marque: ATLANTIC Modèle: Aeromax 5 VS COP: 3,39		
Emetteur d'ECS	Typologie : Robinet d'eau chaude sanitaire de type Mitigeur Thermostatique ou Mitigeur Mécanique Econome	Habitation	

Résultats

Respects des critères RT2012 :

Critère	Exigence	Résultat projet	Gain	Conformité
Performance de l'enveloppe (En points)	Bbio _{max} 70,7	Bbio 33,9	52,1 %	₩
Consommation conventionnelle (En kWhep/m²de SRT.an)	Cep _{max} 58,7	Cep 44,1	24,9 %	₩
Confort d'été (En °C)	Tic _{ref} 29,5	Tic 26,4		₩
Ponts thermiques (En W/m.k)	Ratio Psi ≤ 0.28 Psi 9 ≤ 0.60	0,09 0,08		₩
Surface de baies (En m²)	> 1/6 SHAB 20,02	26,06		₩
Etanchéité à l'air (En m³/h.m²)	Q _{4PaSurf} ≤ 0,20	Mesure à réaliser à réception du bâtiment		A confirmer
Recours à une énergie renouvelable	> 5 kWhep/(m².an)	Chauffe-eau thermodyamique		₩

Le projet est conforme aux exigences de la RT 2012.


Respects des critères PASSIV'HAUS:

Critère	Exigence	Résultat Projet	Conformité
Besoin en énergie de chauffage (KWh/(m².an))	≤ 15	15	~
Où Puissance de chauffe (W/m²)	≤ 10	10	•
Consommation en énergie primaire (kWhep/(m².an))	≤ 120	118	⋄
Fréquence de surchauffe (>25°C) (%)	≤ 10	8	*
Etanchéité à l'air n50 (h ⁻¹)	n ₅₀ ≤ 0,60	Mesure à réaliser	
Construction sans pont thermique Coefficient Psi (W/m.K)	Recommandé ≤ 0,01	Estimé à 0,01	₩
Performance de l'enveloppe Isolation des parois (U) (W/ (m². K))	Recommandé Mur, toit≤ 0,15 Dalle ≤ 0,15	0,12 0,14	₩
Performance des menuiseries (W/ (m². K))	Recommandé U _{w, MOE} ≤ 0,85	0,80	₩
Performance de la VMC double flux Efficacité (calcul selon méthode PHI) (%) Consommation électrique (Wh/m³)	Recommandé ≥ 75 ≤ 0,45	84 0,29	₩

Le projet est conforme aux exigences Passiv'haus.

ANNEXE PHPP

Annexe: définitions

RT2012: Réglementation Thermique en vigueur

Bbio : Besoin bioclimatique conventionnel en énergie d'un bâtiment pour le chauffage, le refroidissement et l'éclairage artificiel. Valorise la conception bioclimatique du bâtiment.

Bbio max : Exigence d'efficacité énergétique du bâti (besoins bioclimatiques du bâti). Cette exigence impose une limitation simultanée du besoin en énergie pour les composantes liées à la conception du bâti (chauffage, refroidissement et éclairage), imposant ainsi son optimisation indépendamment des systèmes énergétiques mis en œuvre.

Cep : consommation conventionnelle d'énergie primaire du projet portant sur les consommations de chauffage, de refroidissement, d'éclairage, de production d'eau chaude sanitaire et d'auxiliaires (pompes et ventilateurs).

Cep max: Exigence de consommation conventionnelle maximale d'énergie primaire, portant sur les consommations de chauffage, de refroidissement, d'éclairage, de production d'eau chaude sanitaire et d'auxiliaires (pompes et ventilateurs). Conformément à l'article 4 de la loi Grenelle 1, la valeur du Cepmax s'élève à 50 kWh/(m².an) d'énergie primaire, modulé selon la localisation géographique, l'altitude, le type d'usage du bâtiment, la surface moyenne des logements et les émissions de gaz à effet de serre pour le bois énergie et les réseaux de chaleur les moins émetteurs de CO². Cette exigence impose, en plus de l'optimisation du bâti exprimée par le Bbio, le recours à des équipements énergétiques performants, à haut rendement.

Tic: Température intérieure conventionnelle atteinte en été par un bâtiment non climatisé.

Tic ref : Température intérieure conventionnelle de référence. Elle est déterminée selon les modalités précisées au titre II de l'arrêté du 26 octobre 2010.

S RT: la surface de plancher hors œuvre nette au sens de la RT.

SHAB: Surface habitable au sens de l'article R 111-2 - Code de la Construction et de l'Habitation

SRE: Surface de référence thermique au sens de la réglementation passiv'haus

PTI: Ponts thermiques intégrés

PTL: Ponts thermiques linéiques

CESI: Chauffe-eau solaire individuel

ECS: Eau Chaude Sanitaire

PAC: Pompe a chaleur

RDC: Rez-de-chaussée

CA : Coefficient d'Aptitude d'un émetteur de chauffage

Eclairage général : L'éclairage général est un éclairage uniforme d'un espace sans tenir compte des nécessités particulières en certains lieux déterminés.

Fermeture: A l'exclusion des dispositifs qui ne réduisent pas les déperditions comme les grilles, les barreaux, les rideaux de magasin de vente, tout dispositif mobile, communément appelé volet, persienne ou jalousie, servant à fermer de l'extérieur l'accès à une fenêtre, une porte-fenêtre ou une porte est une fermeture.

Inertie quotidienne : L'inertie quotidienne est l'inertie utilisée pour calculer l'amortissement des températures intérieures sur une période de vingt-quatre heures.

Inertie séquentielle : L'inertie séquentielle est l'inertie utilisée en confort d'été pour calculer l'amortissement des températures intérieures sur une période de douze jours.

Local : Un local est un volume totalement séparé de l'extérieur ou d'autres volumes par des parois horizontales et verticales, fixes ou mobiles.

Local chauffé: Un local est dit chauffé lorsque sa température normale en période d'occupation est supérieure à 12 °C.